Daniel Morton

Contact: dmorton@stanford.edu 978-393-0515

linkedin.com/in/danielpmorton github.com/danielpmorton danielpmorton.com

EDUCATION

Stanford University

Expected: June 2023

M.S. Mechanical Engineering (Robotics + AI) – GPA: 4.00

Stanford, CA

Cornell University

May 2021

B.S. Mechanical and Aerospace Engineering – GPA: 4.14 – Summa Cum Laude

Ithaca, NY

PROFESSIONAL EXPERIENCE

Medra Robotics Software Engineer Apr. 2022 - Sep. 2022

San Francisco, CA

- Key contributor to the robotics software stack, forming the core infrastructure for defining and executing the robot's behavior. Incorporated state machines, CV, motion planning, logging, debugging, and more
- Formed the MVP for delivery to the first customer in an accelerated timeframe. As employee #2, I saw the process through from the very beginning to a fully viable product in under six months

NASA Marshall Space Flight Center

Jun. 2020 - Aug. 2020

Intern, Propulsion Research & Technology

Huntsville, AL / Remote

- Conceptual modeling of a nuclear-thermal airbreathing vehicle launched from a magnetically-accelerated track
- Developed programs to create, analyze, and optimize 3D-printed heat exchangers

Boeing May 2019 - Aug. 2019

Intern, Product Development

Everett, WA

- Led a team of six to design, pitch, and file a patent for an integrated stowage structure/cabin floor concept
- Designed flight-test electronics components and housings for the 2019 ecoDemonstrator program

RESEARCH EXPERIENCE

Stanford AI Lab - IPRL Sep. 2022 - Present

Research Assistant

Research Assistant

Stanford, CA

Simulation and control of the Astrobee robot for manipulation of deformable objects in the ISS. Collaboration with NASA Ames

Organic Robotics Laboratory

Aug. 2018 - Sep. 2021

Ithaca, NY

- Autonomous Material Composite Morphing Wing (Morton et. al., JCM/AFOSR, 2023)
 - Soft-robotic 3D-printed lattice with embedded optical sensing for an avian-scale wing capable of 3-DOF morphing control (camber, twist, and extension)
 - Led a team of four graduate students over the 2.5-year engineering and research process
- Elastomeric Matrix for Haptics-Aware Foot and Flesh for Legged Robot (Pending)
 - Robotic foot design for force sensing via compliance. Collaboration with ETH Zurich
- Optical Lace for Synthetic Afferent Neural Networks (Xu et. al., Science Robotics, 2019)
 - Optical/structure integration for deformation sensing

AWARDS / FELLOWSHIPS

•	NSF Graduate Research Fellowship	2022
•	Stanford: (Finalist) Knight-Hennessy	2021
•	Cornell: McManus Design Award	2019
•	Cornell: Goethe Prize	2019

SKILLS

Robotics:	Motion control/planning	State estimation/filtering	Optimization
Computer vision	SLAM	Dynamics/Control	Simulation
ML	MDPs/POMDPs	ROS	
Software:	Python	C++	MATLAB
Julia	С	Git	Linux
CAD/CAE:	Inventor	SolidWorks	CATIA
Fusion	AutoCAD	COMSOL	nTopology
Miscellaneous:	3D printing	Mechatronics	Prototyping
Product design	Arduino	Machining	

SELECTED COURSEWORK

Stanford

- CS 237A and CS 237B: Principles of Robot Autonomy I and II
- CS 229: Machine Learning
- CS 221: Artificial Intelligence
- CS 238: Decision Making Under Uncertainty
- CS 361: Engineering Design Optimization
- EE 364A: Convex Optimization
- EE 263: Linear Dynamical Systems
- ENGR 205: Control Design Techniques
- AA 273: State Estimation and Filtering for Robotic Perception
- ME 320: Introduction to Robotics

Cornell

- MAE 4180: Autonomous Mobile Robots
- MAE 4160: Spacecraft Technology and Systems Architecture
- MAE 4060: Spaceflight Mechanics
- MAE 5070: Dynamics of Flight Vehicles
- MAE 3780: Mechatronics

CONFERENCES

•	Learning for Dynamics and Control	2022
•	Bay Area Robotics Symposium	2021

AFFILIATIONS

- American Society of Mechanical Engineers (ASME)
- Tau Beta Pi Engineering Honor Society (NY Delta)
- National Eagle Scout Association