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1 Introduction

Over the past two years, the public eye has been focused
on one key dataset: COVID case numbers. Yet, trends in
COVID-19 case numbers have been relatively difficult to
predict due to the many dependent factors and the un-
predictability of human behavior. While many machine
learning approaches have been taken to model and pre-
dict these disease trends, we approach this by incorpo-
rating Google trends data for pandemic-related search
queries, in the hopes that this is a valuable metric for
relating human behavior to the prediction of COVID-19
case counts.

In this project, we explore the effectiveness of three
model types in predicting COVID-19 trends using search
query frequency data: multivariate linear regression,
random forest regression, and long short-term memory
(LSTM).

2 Related Work

Previous studies have sought to model COVID-19 case
count trends and characterize how external factors can
influence the case numbers, with a few previous reports
looking at the inclusion of search query trends as features
in COVID case prediction models. These works, such
as [3] and [4], look at the correlation between case count
trends and search query trends within the global context
and compare these correlation results between countries.
In addition, similar attempts to leverage search trends as
features for multiple-regression models have been made
for non-COVID disease forecasting [7]. Previous case
count modeling work utilizing search query trends has
been focused primarily on unsupervised learning meth-
ods [4], to gain insight about the indicative nature of on-
line search behavior. Nguyen et al. [3] analyzes the im-
pact of adding search query data to the feature set of su-
pervised learning models for COVID prediction on the
country scale, concluding that these search trends are
generally highly correlated with cases. Similar LSTM
models to our implementation have been used on the
country-wide case count scale for several other countries
such as in [1] and [5]. We expand on this work by also
attempting to use Google search query data to model
COVID case count trends, but in contrast to this previ-

ous work, we consider several different models to fore-
cast temporal trends on the US-state-wide scale.

3 Dataset and Features

We used COVID case data taken from the COVID-19 Data
Repository from the Center for Systems Science and En-
gineering at Johns Hopkins University. From this repos-
itory, we extracted time series data of confirmed cases in
the US over a 21-month period (February 2020 to October
2021), with a primary focus on the state of California. As
the case data is stored in a per-county basis, we extracted
the data for all counties within California and took the
overall sum.

The Google trends data was then extracted using the
pytrends API for 11 search queries we predicted to be
strongly correlated with case counts:

covid covid symptoms covid cases virus
coronavirus | coronavirus symptoms | cough vaccine
COVID-19 | coronavirus cases covid vaccine

Table 1: Search queries used for the feature set

Google Trends formats its data as a relative search in-
terest, scaled as a value between 0 and 100 depending on
the number of searches at a given day and the maximum
number of searches within the requested timeframe. This
does have some limitations though: for up to 9 months,
the data returned is on a daily basis, but any longer than
that, the data will be returned on a weekly basis, dra-
matically reducing the resolution of the trends. Since we
sought to fairly compare data across a 21-month time-
frame, additional pre-processing of the data was neces-
sary before we could use it in the models: namely, using
an overlapping method of reconstructing Google trends
data where data for shorter, overlapping periods are con-
catenated and normalized by the corresponding lower-
resolution larger-timeframe data.

4 Methods

For each of the following models, we trained using the
daily Google trends data for the aforementioned search
terms, and then predicted the daily case count values
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over a subsequent test window of time. To reflect the de-
lay in correlation between COVID-related search queries
and case count impact, we use a shifted time delay of
6 days, which was experimentally determined as men-
tioned in the hyperparameter tuning section below.

4.1 Multivariate Linear Regression

As a performance baseline, we trained a multivariate lin-
ear regression model using ordinary least squares. This
model seeks to minimize the residual sum of squares be-
tween the training data and the predicted values, by ad-
justing a set of weights 5;...3,,. This model takes the form:

Y =080+5X1+BXo+ ...+ 8, Xp +e¢

where Y is the predicted output, X; is the ith feature and
B, is the associated weight.

4.2 Random Forest

We also trained a random forest regression model to
leverage ensemble learning for case count prediction.
Random forests (as applied to regression rather than clas-
sification problems) work by sampling the dataset and
building a series of decision trees, then averaging the out-
puts from the trees to form a prediction. As compared
with standard decision trees, the use of bootstrap sam-
pling is a significant advantage of random forests, as this
helps reduce overfitting and improves the overall perfor-
mance of the model.

For our model parameters, we enabled bootstrap sam-
pling, used the squared error as a measure of split qual-
ity, and used a predefined random seed to improve con-
sistency between separate training times. For the sam-
pled trees, we allowed these to use up to the full amount
of features in the model (k features per tree < 11 total
search queries). A total of 1000 trees were included in the
forest. Varying ‘'max_samples’ and ‘'max_features” within
the model was found to have small, detrimental effects
when compared to using the ‘auto’ value for each (set-
ting the maximum to be the total number of data points
and features, respectively).

A visualization of one of the decision trees used can
be seen in Figure 1. Interestingly, when visualizing the
impurity-based feature importances within these trees,
this model indicated that "covid symptoms" was signif-
icantly more important than the other search queries,
coming in at 66%. The query "coronavirus" was in sec-
ond place at 23%, and all others were 3% or less. The
importance of "covid symptoms" seems to make sense - a
person who may have some initial symptoms appearing
may google this a few days before deciding to get a test,
with the official positive/negative result coming in a day
or two after that. The equation for defining these feature
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importances is as follows: for importance i;, feature j,
reference score s, repetitions kin 1, ..., K,

K
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Figure 1: Random Forest tree structure example from ini-
tial testing

43 LSTM

Finally, we experiment using a long short-term memory
model on our time series COVID case data. This model,
which is a type of recurrent neural network, utilizes re-
peating instances of the architecture depicted below.
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Figure 2: LSTM Architecture

The LSTM model utilizes recurring instances of these
blocks, which receives an input sequence and utilizes
gates within the block to generate the output. Three gates

are present:

1. Forget gate: conditionally chooses block information

to discard

2. Input gate: conditionally chooses input values to in-

clude in update

3. Output gate: conditionally chooses values to include

in block output

These gates are described by the following equations:

fi= U(Wfift +Urhi—1 + bf)

it = O'g(WiZL’t + Uiht—l + bz)
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O = Ug(WOI't -+ Uohtfl -+ bo)
¢t = froci—1 +igooc(Wexy + Uchy—1 + be)
ht = ot o op(ct)

where W and U are weight matrices for the input and
recurrent connections.

We implement the LSTM model in TensorFlow and
train with a hidden layer consisting of 50 neurons, using

a batch size of 60, the mean absolute error loss function,
and Adam stochastic gradient descent for 50 epochs.

5 Experiments/Results/Discussion

5.1 Hyperparameter Tuning

Adjusting the delay between searches and cases: Effects on MAPE
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Figure 3: Varying parameters to judge effects on model
performance

Key hyperparameters across the models trained in-
clude 1) time delay between search trends and case
counts, 2) length of time frame, and 3) train/test split per-
centage. Variations of each of these are shown in Figure 5,
plotted with their respective effect on the model accuracy.

From these studies, we determined that the minimum
error can be found using a time delay of roughly 6-8 days,
along with a time window of approximately 7-8 months
and a relatively high train/test split ( 90% train). The spe-
cific "best" values vary slightly depending on the model
being considered, but overall, these trends do match our
prior hypotheses about the data. The 6-8 day time delay
intuitively makes sense with when an infected individual
might start noticing preliminary symptoms, then eventu-
ally decide to get tested. A time frame of 7-8 months gives
a large enough set of data to reduce overfitting, but not so
large that the time frame covers significant external fac-
tors that influence how COVID spreads (like vaccines).
The high train/test split may indicate some overfitting,
but this parameter more relates to the predictive duration
of our model - which is best at predicting about 2 weeks
into the future. If we were to apply this model today, we
would only consider the most recent months for training,
and would predict trends roughly 2 weeks in advance.

5.2 Feature Importance

We also performed experiments to gain insight into
which features have the highest impact on model per-
formance. The results of a feature ablation study on the
LSTM model is depicted in Figure 4, revealing a high im-
portance for queries such as "coronavirus symptoms" and
"covid", but quite low for "cough.”

Ablation study on search queries

8.0%

6.0%

4.0%

2.0%

0.0%

% Increase in MAPE after ablation

covid

coronavirus
covid-19

covid cases
coronavirus cases
covid symptoms
coronavirus symptoms
cough

virus

vaccine

covid vaccine

Ablated Queri

[0}

S

Figure 4: Ablation study on search queries in LSTM
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5.3 Model Performance and Comparison

A performance comparison across the three models can
be seen in Figure 5 for a sample four-month period. As
can be seen from the prediction plots, the LSTM model
outperforms the baseline model and the random forest
model in its ability to predict COVID case numbers over
the test window.

Linear Regression Case Prediction

30000 —— Actual (Train)
Actual (Test)
—— Ppredicted (Test)

20000 4

10000 -

wany vase wuuin

—10000 -

] 20 40 60 80 100 120
Day Number

Random Forest Case Prediction

30000 —— Actual (Train)

Actual (Test)

—— Predicted (Test)
25000 4

20000 4

15000 -

Daily Case Count

10000 -

5000 A

] 20 40 60 80 100 120
Day Number

LSTM Case Prediction
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Figure 5: Model performance comparison for a 4-month
period (January-April 2021)

As an evaluation metric for comparing our models,
we computed the mean absolute percent error of each
model’s predicted output. The magnitude of cases varies
drastically over the duration of time relevant to the
COVID-19 pandemic (i.e., an estimate of case numbers
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that differs by 1000 would mean something very differ-
ent in March 2020 and December 2020) and using a per-
cent error metric helps to normalize this across different
timeframes. For a number of fitted points n, actual value
A;, and forecast value F3,

1= A; — F,
MAPE =-Y £ _~°*

To compare model performance over different time peri-
ods, we train and test our models and compute the mean
absolute percent error for a sliding window of 4 months
over the larger time frame of 21 months. This allows for
a quantitative assessment of the relative model perfor-
mance. As can be seen from Figure 6, the LSTM model
generally produces results with alower MAPE value over
the overall time frame. There is also a significant increase
in the error in the timeframes which include the begin-
ning of 2021, but this is expected due to the huge decrease
in COVID case numbers brought on by the vaccine roll-
out that occurred in January 2021, an effect which cannot
be accurately predicted from these Google search trends
alone.

These tests over a wide range of timeframes and du-
rations also served to reduce the chance of overfitting to
any specific period. On top of this, we also tested vari-
ous means of sectioning our data into train/test sets, and
limited the upper bound of the training data percent-
age. However, some overfitting effects and high error
rates can be attributed to our evaluation metric. While
MAPE was very valuable to compare our model per-
formance across timeframes with varying case numbers,
this can sensitive to outliers, which can often occur in
data such as this. These outliers and spikes in the data
can then skew the MAPE high, when making compar-
isons between noisy data and predictions. Some meth-
ods to improve this include using MAAPE (median aver-
age percent error), which is a slightly uncommon evalua-
tion metric, or potentially applying a low-pass filter to the
data before training (this would be considered in future
work).

Mean Absolute Percentage Error of Model Predictions Over Time

525 —— Multivariate Linear Regression
& Random Forest
— s

Figure 6: Effects on MAPE by considering different time-
frames within COVID
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5.4 Additional Experiments

State Linear Regression | LSTM | Random Forest
Ohio 0.223 0.192 | 0.307
Alabama | 0.507 0.277 | 0.411
Texas 0.353 0.347 | 0.507
Illinois 0.448 0.533 | 0.503
Florida 0.343 0.408 | 0.536

Table 2: Comparison of model performance (MAPE) on
other states

While most of our work for this project was focused
on data from California, we decided to see how well this
model could be applied to other states. We hypothesized
that states without extremely large metro areas would
have improved performance in our model (due to the dif-
ference in how COVID spreads in more dispersed envi-
ronments), and this seems approximately true based on
these results, particularly for the application of LSTM to
Ohio and Alabama. Illinois, which has case counts that
are highly impacted by Chicago, sees poor performance
across all models. Florida and Texas also perform poorly
though, with linear regression seemingly beating LSTM
and RF, indicating some weakness in the model.

This state comparison uses the timeframe between
February and June 2020, with a time delay of 6 days, and
a 75% train / 25% test split.

6 Conclusion/Future Work

In this work, we sought to predict future COVID-19 case
numbers using only the trends in Google search data,
for a set of 11 COVID-related queries such as "covid
symptoms" and "coronavirus cases". In our compari-
son of three different models (linear regression, random
forests, and LSTM), we saw that LSTM performed the
best, achieving a mean average percent error (MAPE) of
as low as 19%. This outcome matched our hypothesis that
LSTM would perform the best of our three models, as this
is better suited to time-series data, but interestingly, lin-
ear regression was not as far off as expected.

Overall, we found that in general, our models using
only Google search terms will at best predict COVID case
numbers within 25% (on average) of the true value, with
this error dramatically increasing depending on the noise
in the COVID data or external factors not represented in
the model.

However, considering that these Google search trends
are the sole training data this model had, this does reveal
some interesting links between online searches and real-
world viral spread, and this reinforces findings from pre-
vious studies such as the importance of the search-case
delay.

While the world hopes that future work on COVID
spread will soon be unnecessary, this pandemic could re-
main for longer than expected with new variants, and
the data we collect today can help inform future epi-
demics/pandemics. Such future work may include train-
ing and testing the performance of deep neural net-
works or conducting expansive feature selection exper-
iments across a much larger collection of potentially re-
lated search queries to help reveal precisely which search
terms have the most predictive relevance to COVID case
data.

7 Contributions

Both team members contributed evenly to the project
and the final report. Both Dan and Megan worked to
implement the data scraping and preprocessing code
and trained the baseline model. Megan focused on
LSTM and code integration while Dan focused on RF
and hyperparameter tuning.

Github link:
https://github.com/mb2532 /CS229_FinalProject.git
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