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Overview of the Team’s Approach 

Localization: The localization uses a particle filter with a modified weighting algorithm. As usual, the weight is 

mainly based on how well the depth measurement matches the expectation. If a beacon is observed, these 

depth-based particle weights are multiplied by their likelihood given the measured distance to the beacon and 

the expected distance from the particles. And, if a beacon is expected but none is observed, then the particle 

receives a weight of 0. A particle also receives a weight of 0 if it is outside the bounds of the map. At the 

beginning of the program, 48 particles spanning 360° at 7.5° intervals are initialized at each WP. The robot 

then turns until the particle set converges to a single WP, and from there onwards, a weighted average of all 

particles determines the pose estimate. Particle filter was selected over EKF since the discontinuities in the 

walls at corners and termination points would lead to significant errors in the EKF localization.  

Roadmap: The roadmap was generated in a way that ensured coverage of the map at a low node quantity and 

minimal computation time. This was a three-step process: first, all WPs and EC WPs were added to the list of 

nodes, and second, a grid of points with a uniform spacing of 0.5 m was overlaid on the map, with all points 

in the free space added to the nodes. If these points did not achieve a specified minimum number of nodes, 

the remainder would be randomly sampled from the free space. Generally, only about 150 nodes ensured 

dispersion across all map regions. Then, instead of evaluating the roadmap edge connections between all 

nodes, a k-nearest method was used to significantly reduce the computation time.  

Path Planning: Once the initial WP was determined, all permutations of the WP/EC WP order were evaluated 

to see what the score for the robot would be after 42 meters of travel distance (the typical maximum travel 

distance observed during the 5-minute tests). Since the EC WPs are worth more, this algorithm typically 

prioritized these. The maximum-score path was then selected, with ties in the score broken by the lowest 

overall cost of the path.  

 

Individual Contribution, Integration, and Testing 

My area of focus for this project was primarily in the roadmap generation, implementation of Dijkstra’s 

algorithm, and some path planning. In more detail, these responsibilities included: 

- Conversion of the map to polyshape format, including the buffer around obstacles and 

determination of enclosed regions where the robot cannot travel 

- Generation of the roadmap and testing/optimization of various node sampling methods 

- Implementation of Dijkstra’s algorithm with our roadmap and our path planning algorithms 

- My path planning algorithm: At a waypoint, calculate the Dijkstra cost of traveling to each other 

unvisited waypoint, and then go to the one with the lowest cost. When the waypoint is reached, mark 

it as visited and then find the next path 

- Additional functions for building structs as well as plotting the trajectory/map 

Both group members also performed test-runs of the code in the simulator for debugging and determination 

of the best path-planning algorithm. I contributed approximately 15-18 hours to this process.  

  



2 

 

Flow Chart of the Solution 
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Discussion of Competition Performance 

Run # WPs Detected  
(10 pts) 

EC WPs Detected  
(20 pts) 

Incorrect WPs  
(-5 pts) 

Bonus time Total 

1* 1 1 0 N/A 30 

2 1 2 0 N/A 50 

3 1 1 0 N/A 30 

4 3 1 0 N/A 50 

If the issue in the competition was fixed (See Figure 4, 1st plot): 

Bonus 3 4 0 N/A 110 

*The first run did not count because the run was reset before both group members could confirm 

Run 2 restarted the 5 minute timer, and runs 2-4 were performed within this time limit. A maximum of 50 

points were obtained in runs 2 and 4, though run 4 visited more waypoints overall. See Figure 1 in the 

appendix for the plots of these runs.  

What went well? 

Some of the major successes of our group’s program were the particle filter and the overall path planning 

algorithm (despite some errors during the competition, which will be discussed later). The initialization of the 

robot’s position worked reliably over all four runs – there were no times when the robot believed it started 

from an incorrect waypoint, and the robot reliably traveled in the correct direction no matter the starting 

orientation at a waypoint. This was also a fast process – the robot would only turn until the particle set 

converged, which meant if a beacon was immediately in sight, the robot did not need to spend extra time 

turning an entire rotation. Additionally, the PF’s tracking of the pose while traveling between waypoints was 

quite accurate. There were no cases where the estimated pose was outside of the bounds of the robot, as 

observed during the competition with the live-plotted particles on the simulator. This observation also 

indicates that the PF had little issue dealing with the discontinuities in the walls, which, as expected, was a 

huge benefit of the PF as compared to the EKFs used by other groups. 

The path planning algorithms also worked quite well, though the robot did not complete the full extent of the 

planned path. When debugging the solutions after the competition, we found that the planned paths would 

have earned at least 100-120 points in 5 minutes. The variation in this value is based on the starting waypoint 

– depending on where the robot starts, the theoretical maximum obtainable score within the 5-minute 

timeframe can differ. This would have resulted in a victory during the competition. See the reference 

trajectory in Figure 4 for an example of this path. Additionally, a major strength of this path planning was its 

speed – this took a maximum of only about 3 seconds during the competition, between the end of the initial 

localization and the actual movement. Compared with other groups, this would have yielded our team a 

significant advantage in terms of time available for finding waypoints.  

Even the roadmap performed well in terms of calculation time - this was a strength of our program as 

compared with other groups, who had upwards of 900 nodes on their maps and were evaluating the 

connections between all of them. Had we done something similar, we would have needed to evaluate over 

600x the edge connections, which would have led to some of the long delays seen in other groups’ programs.  

What didn’t work / What could be improved? 

The main issue during the competition was due to how the roadmap was built on the final competition map. 

We had set the radius parameter for the map buffering to be 0.3 meters – this was more than was necessary 

based on the radius of the robot, but we knew that the localization would not be 100% perfect, and wanted 

some extra space to avoid bumps in case the robot wavered slightly from the planned path. During testing 
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with the practice maps, this worked excellently. However, on this new map, the narrow channels near the top 

middle EC waypoint caused some issues with the roadmap. The large buffer led to extremely narrow 

pathways in the free space, and the roadmap only generated a single one-way path into this region. The 

reason for this path being one-way was that the limited nodes in this area meant some nodes were within the 

k-nearest of others, but this was not the case in the other direction. This was an unforeseen consequence and 

it led to issues with the directionality of the Dijkstra’s algorithm in use, such that the robot entered this region 

of the map but could not find its way out. See Figures 2-3 for a visualization of this issue in the 

buffer/roadmap.  

Each of the following modifications would have fixed this error:  

- Increasing the k-nearest value from 8 to 12 

- Reducing the buffer on the map to 0.25m or less 

- Appending the reverse order of the edge connections to the roadmap (and evaluating only the unique 

edge connections to avoid duplicates) 

Since this was not anything we had run into during testing, debugging this issue required digging into the 

code and seeing what was returning values we were not expecting. Eventually, we found that Dijkstra’s 

algorithm returned NaN when at this troublesome waypoint, which helped us understand where the larger 

issues were.  

Fixing that issue with the roadmap generation would have led to a consistently successful performance in the 

competition. However, there are certainly plenty more ways to improve the overall performance, especially 

with how noise and delays are handled.  

Testing the robot’s performance with noise on the RSDepth sensor data (standard deviations ranging from 

5cm up to 1m) showed that this program could consistently handle even extreme values of noise, likely due to 

the weighted averaging of the particles. At the SD = 0.05 condition, there was no noticeable difference in the 

trajectory/localization as compared with the no-noise case. Even at SD = 1, the robot was able to visit 6 

waypoints and achieve a score of 90, without bumping into a single wall. The main difference in this case was 

that the robot didn’t follow as direct of a path between waypoints, and the orientation saw the largest errors 

(much of the time lost due to inefficient motion between waypoints was because of turning). See Figure 4 for 

these plots.  

Testing the robot’s performance with communications delays revealed the primary area for improvement, 

especially if this was to be transitioned to a physical robot. At a delay of only 0.1 seconds, the robot’s 

trajectory was highly erratic, and it spent a significant amount of time moving back and forth along the 

planned path. While it still managed to avoid bumping into the walls, it was only able to reach 4 waypoints 

within the 5 minutes (score: 60). And at a delay of 0.2 seconds, the robot was unable to move anywhere past 

the starting region. This issue with delays was expected though, since we did not account for these with 

interpolation or other means. See Figure 5 for these plots.  
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Figure 1: Competition data for runs 1-4 
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Figure 2: Comparison of map buffer radii. Left: 0.3 m, Right: 0.2 m. The narrow pathways with the 0.3 m 

buffer led to an impassable region at the top middle of the left map. 

 

 

Figure 3: Comparison of the competition roadmap (left) and the improved version which increases k from 8 

to 12, and reduced the obstacle buffer from 0.3 m to 0.2 m. 
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Figure 4: Comparison of trajectories with various noise values 
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Figure 5: Trajectories with communication delays of 0.1 and 0.2 seconds 

 

 

 

 

 

 


