
Optimization Techniques for State Estimation:
EKF Descent Methods and KF Genetic Algorithms

Daniel Morton
dmorton@stanford.edu

Abstract—State estimation and optimization are two inherently
linked fields of research and engineering — many state estimation
techniques either directly apply optimization algorithms, or are
highly similar in their approach. For instance, the iterated EKF
applies a series of Gauss-Newton steps to converge to a better
linearization point of the inherently nonlinear EKF objective
function. But, the Gauss-Newton method is only one out of many
descent methods, which raises the question of what happens
when other descent methods are applied to the function? Also of
interest is what happens when the parameters in the system are
not fully known — previous research has commonly looked into
noise estimation, but not as much when the dynamics matrix (A)
is fully unknown. Therefore, this paper covers two explorations
of merging optimization and state estimation: first, a study and
comparison of different descent methods for the EKF, and second,
a study of applying genetic algorithms to iteratively construct a
Kalman filter when the dynamics matrix is unknown. Through
an example with a Dubins car system, we show that while
other descent methods (Gradient Descent, Adagrad, and Nesterov
Momentum) can occasionally produce a better result than the
iEKF, the convergence rate, reliability, and speed of the Gauss-
Newton step in the iEKF is unparalleled. And, using a holonomic
robot system, we show that genetic algorithms can produce a
Kalman filter that does track the ground truth trajectory, but
convergence to the true A matrix values is not guaranteed.

I. INTRODUCTION

Since Kalman’s original introduction of his filter in 1960
[1], there have been numerous different filtering methods
introduced which build on the original Kalman Filter (KF)’s
capabilities. The Extended Kalman Filter (EKF) and the
Unscented Kalman Filter (UKF) [2], for instance, aim to
improve the filter’s performance on nonlinear systems by either
linearizing about the belief state, or propagating a set of sigma
points through a nonlinear function to gain a new estimate of
the mean and covariance [3]. Just in these few examples, we
see that state estimation is inherently intertwined with opti-
mization: the linearization process for the EKF (and likewise,
the iterated EKF) is essentially a Gauss-Newton optimization
step, and the UKF follows the same process as generalized
pattern search or Hooke-Jeeves. Even more examples can be
found when considering the similarities between the KF’s
Gaussian distributions and optimization techniques which also
rely on Gaussian assumptions, population methods and particle
filtering, and more.

Focusing on the EKF specifically, we can raise a num-
ber of questions about this linearization process and how
to best handle finding the optimal point for evaluating the
Jacobians. Namely, when we have a nonlinear model, does
the single Gauss-Newton step for linearization always lead to
a good estimate, or will iterative descent methods improve

the solution? Conversely, will these iterative methods ever
decrease the performance of the EKF? And, given that there
is a broad range of different descent methods, how does the
performance compare for each of these? The first half of this
report explores these questions, focusing on how different first-
order descent methods (Gradient Descent, Adagrad [4], and
Nesterov Momentum [5]) compare with the EKF and the iEKF.

Another interesting challenge in filtering is how to handle
uncertainty in the model parameters, and the most common
example of this is noise estimation. While the Kalman Filter
and its derivatives can handle zero-mean additive Gaussian
white noise on the measurements and process noise, the
problem must be reformulated if the distribution of this noise is
unknown. Recent research has looked into ways to determine
the magnitudes of these noise distributions, including using
covariance matching [6], Bayesian optimization [7], fuzzy-
based evolutionary algorithms [8], recursive approaches [9],
or Innovation-based Adaptive Estimation (IAE) [10].

One noise estimation technique, Multiple Model Adaptive
Estimation (MMAE) [10] inspired the genetic algorithms work
in this paper — this technique handles a bank of several
different models and computes the Bayesian probability of
each being the true system model. This works well for noise,
but breaks down when the system dynamics are fully unknown
because it relies on the assumption that one model is ”correct”
out of the population. Therefore, if we have a population of
filters with unknown system dynamics, how can we converge
to the correct model, using a mix of state estimation, system
identification [11], and optimization? Genetic algorithms may
serve as the answer to this problem, which has been explored
in the second part of this paper.

II. DESCENT METHODS FOR THE EKF
A. System Overview: Dubins Car

Here, we evaluate the performance of each of the descent
methods on a Dubins car (an inherently nonlinear dynamic
system requiring the use of the EKF). To further increase the
nonlinearity, we use a range-and-bearing measurement model
to four fixed map markers, with the angles from the bearing
dictating this nonlinearity. Originally, a GPS measurement
model was used, but this is a linear measurement model, and
resulted in even less of a noticeable effect from the descent
methods. Therefore, we have a state ∈ R3: {x, y, θ} and a
measurement model ∈ R12 (where each range measurement
∈ R1 and each bearing measurement is a unit vector ∈ R2).

For the noise, we have a magnitude of 0.1 on each diagonal
element in the noise covariance matrix R, and likewise, 0.01

1

on the diagonals of Q. And for control, we apply a constant
forward velocity v, and a sinusoidally-varying rotation rate ϕ.

Evaluating the EKF on this system leads to the following
result (Figure 1). As we can see, the EKF generally does
a decent job at fitting the filtered trajectory to the ground
truth, with a relatively low covariance. This result is not
perfect, however, and we will use this as a baseline to compare
the other models against and see if there are any noticeable
improvements.

Fig. 1. The baseline system for the descent methods test, filtered using the
EKF

B. Approach

In this section, we focus primarily on three first-order
descent methods for determining the linearization point for
the EKF, and compare it to the results from standard methods,
the EKF and the iEKF. First, gradient descent is one of the
simplest optimization descent methods (taking a step size in
the direction of the current gradient), and will therefore serve
as a good reference point for the other algorithms. Second,
Nesterov Momentum gradually accelerates the descent by
adding a momentum term, and “looks ahead” to the future
position to avoid overshooting the minimum. And third, Ada-
grad adapts the learning rate to each component of the design
vector, as opposed to the constant rate from the other methods.
[12] [4] [5]

For this project, the implementations of Adagrad and Nes-
terov Momentum are vanilla, but the gradient descent uses
two small modifications — normalization of the gradient prior
to evaluating the step, and a quadratically-decaying step size.
Without the gradient normalization, the system was quite
unstable — a high gradient at the start could lead to a very poor
initial linearization point, leading to further compounded error
later. And without the decaying step size, the gradient descent
had a difficult time converging to the 1e-3 level within the
20-iteration limit, due to oscillation about the minimum. The

quadratic decay was experimentally observed to out-perform
a more simple linear decay.

C. Performance

To evaluate the relative differences in performance between
each method, we will use the cumulative sum of Mahalanobis
distances between the filter estimate and the ground-truth value
at each timestep, parameterized by the filter covariance. This
will give a reliable measure of how well the filter tracks the
ground truth, similar to a cumulative error (lower values are
better).

Performance =

T∑
t=0

(µt − xt) Σ
−1
t (µt − xt)

The following Table I summarizes this performance on an
example trajectory, across each method. As expected, iEKF
outperforms the EKF by selecting a better point for the
linearization. The more interesting result is in each of the other
descent methods — all of these outperform the EKF, but only
Adagrad and Nesterov Momentum outperform the iEKF as
well (and only by a small amount).

TABLE I
DESCENT METHOD PERFORMANCE METRIC COMPARISON

Metric % Improvement
over EKF

% Improvement
over iEKF

EKF 543.24 0.00% -4.85%
iEKF 518.11 4.62% 0.00%
Gradient Descent 523.27 3.67% -1.00%
Adagrad 517.38 4.76% 0.14%
Nesterov Momentum 515.41 5.12% 0.52%

We can also plot the trajectories from each method to see
how these compare to each other. However, the differences in
performance are so small that the trajectories are imperceptibly
different from the standard EKF result from Figure 1. So
instead, to visualize the differences in the filter, we focus on
the errors with respect to the ground truth (Figure 2) and the
difference with respect to the standard EKF result (Figure 3).

If we subtract out the ground truth from the history of
each filtered value (Figure 2), we can directly observe the
error at each timestep. However, since each filter performs
very similarly, any difference between the methods is not very
visible here, save for a few instances where gradient descent
leads to slightly higher error. Alternatively, if we subtract away
the results from the standard EKF (Figure 3), we can more
clearly observe how these iterative descent methods affect the
filtered result. Here, gradient descent deviates from the EKF
the most, whereas iEKF and Nesterov Momentum both track
very closely with each other, and these two also had the least
difference to the EKF result.

D. Convergence

The proximity of the filtered result to the ground truth is
only one part of determining how well these methods perform
— convergence and runtime are equally important, if not more
so. To determine this, we ran each method on the example

2

Fig. 2. Error in filter output with respect to the ground truth

Fig. 3. Difference in filter output with respect to the EKF

TABLE II
CONVERGENCE AND TIMING COMPARISON FOR EACH DESCENT METHOD

Convergence % Average iterations
until convergence Std. dev. Average residual

when not converged Std. dev Average time
per iteration Std.dev

iEKF 100.00% 3.45 0.74 N/A N/A 0.0013 0.0005
Gradient Descent 60.30% 14.43 3.53 0.0017 0.0010 0.0141 0.0058
Adagrad 65.33% 10.79 4.31 0.0095 0.0135 0.0097 0.0047
Nesterov 69.35% 12.91 3.81 0.0025 0.0039 0.0126 0.0047

TABLE III
PERFORMANCE COMPARISON ACROSS DIFFERENT RANDOM SEEDS

Random Seed
0* 1 2 3 4 5 6 7 8 9 10 Average

EKF* 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
iEKF 4.62% -0.61% 1.31% 0.67% 0.09% -1.37% 2.07% 1.55% 1.67% 1.92% 0.71% 1.15%
Gradient Descent 3.67% -2.56% -1.31% 0.12% -1.49% -2.30% 0.50% 0.71% -0.40% 2.71% -1.23% -0.14%
Adagrad 4.76% -0.71% 0.41% 0.26% 0.37% -1.64% 1.98% 1.50% -10.26% 2.00% -0.19% -0.14%
Nesterov Momentum 5.12% -0.54% 0.89% -1.72% 0.22% -2.82% -0.71% -0.02% 1.31% 4.07% -1.03% 0.43%

trajectory, and then averaged the convergence and timing
statistics over every timestep. Based on these results in Table
II, we see that iEKF converges in all cases, typically in just
a few iterations. Also, each iteration is very fast to compute,
nearly an order of magnitude faster than the other methods —
resulting in this being by far the most computationally efficient
algorithm. Gradient descent reaches the convergence criterion
within the allotted 20 iterations only 60% of the time, and
therefore performs the worst out of all of these methods, due

to a high number of iterations until convergence and a long
average time per iteration. Adagrad and Nesterov both result
in small improvements over gradient descent, with slightly
higher convergence percentages and fewer iterations required
for convergence. Adagrad takes less time than gradient descent
and Nesterov, but can have a large residual in the cases when
it does not converge. This “worst-case performance scenario”
is also visible in the random seed (8) evaluation (Table III).

So, overall, this evaluation highlights the effectiveness and

3

Fig. 4. Convergence comparison for each descent method

efficiency of the Gauss-Newton method within the iEKF. We
can also visualize this via an example convergence plot, run
during a single timestep of the sample trajectory (Figure 4).
While this can vary depending on the state of the system,
in general, this plot represents the main trends that typically
appear. Firstly, iEKF converges extremely quickly, in only
a few iterations. Adagrad and Nesterov generally perform
similarly, converging in-between the iEKF (the best case) and
gradient descent (the worst performer). Nesterov sometimes
has a few places in the plot where the residual increases,
but this is something to be expected on occasion with a
momentum-based method.

E. Hyperparameters

TABLE IV
SELECTED HYPERPARAMETERS

Gradient Descent Step Size 1.00E-01
Gradient Descent Step Decay Quadratic
Adagrad Learning Rate 5.00E-02
Nesterov Learning Rate 6.00E-03
Nesterov Momentum Decay 0.88
Max Iterations 20
Epsilon 1.00E-03

Given these results so far, one key question to answer is if
this selection of hyperparameters generalizes to other trajec-
tories with the same system. In short — no, not necessarily.
The hyperparameters were selected based on the performance
of the trajectory corresponding to a random seed of 0, so Table
III summarizes the performance when different random seeds
were used (which corresponded to entirely new trajectories
for the system). Clearly, there is some overfitting to random
seed 0, because the benefits of all descent methods decrease
significantly for the other examples. However, it is important
to note that this decrease in performance was based on the
Mahalanobis performance measure, and since these numbers
were quite small to begin with for the EKF, a 10% reduction
in performance (in the case of Adagrad in random seed 8)
only created a nearly imperceptible tracking error in the plot.

Also of interest was how these methods would perform
with order-of-magnitude differences in some of the key system
parameters, including dt and the entries in Q and R. In general,
iEKF and Nesterov stayed very accurate to the ground-truth
trajectory and the result from the EKF, typically outperforming

the EKF by a few percent. There were a few cases where the
iEKF struggled with very large amounts of noise, but overall,
performance remained strong. However, gradient descent and
Adagrad would occasionally result in a performance metric
value which was 2–4x as large as the EKF’s value — resulting
in an observable increase in tracking error in the plot, but not
enough to cause significant issues (the ground truth generally
still remained within the 95% confidence interval).

Overall, a commonality between the descent methods we
examined (other than the iEKF) were that they were highly
sensitive to the hyperparameter selection — particularly the
step size / learning rate. With just minor changes to the hyper-
parameters, the convergence rate for these methods (within the
maximum 20 iterations specified) could vary wildly between
10% - 70%, leading to significantly decreased performance
if chosen improperly. For instance, reducing the learning
rate could slow the convergence enough that the methods
reach the max iterations without achieving the specified 1e-3
tolerance. The decaying step method used for gradient descent
is also essentially another hyperparameter, and as mentioned
previously, running vanilla gradient descent led to instability
and/or oscillation about the minimum.

III. GENETIC ALGORITHMS FOR KFS WITH UNKNOWN
SYSTEM DYNAMICS

Genetic algorithms are a population-based optimization
method that optimizes a collection of design points based on
biological evolution techniques. Three main processes — se-
lection, crossover, and mutation — are applied at each iteration
to select a pair of high-fitness parent chromosomes (design
points), combine their genetic information, and pass this on
to a new child chromosome (which may have some noise or
mutation applied to its values). Since we seek to minimize
the evaluation function, chromosomes in the population with
a lower evaluation function have higher fitness, and are more
likely to pass along their genetic info to the next generation.
[12]

In this section, we apply genetic algorithms to linear-
system state estimation with unknown dynamics, maintaining
a population of candidate A matrices in their flattened state
as our chromosomes, and repeatedly filtering, evaluating, and
updating the values in the matrices according to these genetic
algorithm processes.

A. System Overview: Holonomic Robot

The holonomic robot system has a state space of {x, y, θ}
with a noisy measurement model representing a GPS reading
for the (x, y) position, and a compass reading for the heading
angle, θ. The holonomic assumption assumes that x, y, and θ
are all independently controllable via vx, vy , and vθ, which
differs from the common Dubins car system, where x and y
are functions of the forward velocity and the heading angle θ.
For testing purposes, we applied the following arbitrary control
policy:

4

u(t) =

vx,avg|(sin(t))|vy,avg cos(t)
ϕavg sin(t)


The average linear and rotational velocities are also arbitrary

and were set to 1 m/s, 2 m/s, and 0.1 rad/s respectively. The
simulation was run for 20 seconds with a discrete timestep dt
equal to 0.1 s.

B. Approach

At each iteration, we extract a chromosome from the popula-
tion, convert this into a square matrix, and then run the Kalman
filter using this matrix as A. All other matrices in the Kalman
filter (B, C, Q, R) are predefined within the system models
initialized at the beginning of the algorithm. The Kalman filter
is evaluated using the same µ0 and Σ0 for each chromosome in
the population, so that we can compare the performance across
all chromosomes without one candidate performing artificially
well due to a ”good start”. We store each of the trajectories
produced by the different filters, and then run the evaluation
metric on each of these. For each timestep in the trajectory,
we calculate the cumulative Mahalanobis distance for the
measurement likelihood, and then add on an L1 regularization
term at the end. Once these evaluation values are calculated,
we know the relative performance of each chromosome in the
population, and can run the selection, crossover, and mutation
functions from the genetic algorithm to select the population
for the next iteration. After K iterations, we exit the main loop
and then run a final evaluation process on the last population
to extract the final result.

Note that this approach is only applicable to linear, time-
invariant systems, so that all entries in the dynamics matrix
(A) are constant in time, and there is a fixed set of values (the
design point for the flattened A matrix) to which the genetic
algorithm can converge. Without this assumption, a more
complex genetic algorithm method would need to account for
how the A-matrix parameters vary in time and with the current
system state, which has not been considered in this paper.

C. Evaluation Function

Since we cannot use the ground truth to evaluate the results
from the G.A., we instead rely on the cumulative measurement
likelihood to evaluate the quality of the result from the
genetic algorithm, via the Mahalanobis distance between the
measurement received at a certain timestep, and the predicted
measurement based on the current state estimate µt. This can
be written as follows, where y is the measurement received,
g(µt) is the expected measurement function given µt, C is the
measurement matrix, Σt is the state covariance matrix, and R
is the measurement noise matrix:

(y − g(µt))(CΣtC
T +R)−1(y − g(µt))

Assuming conditional independence on measurements given
the state, we can evaluate the cumulative measurement like-
lihood as the product of the measurement likelihoods at

every timestep. However, this is numerically unstable for
large timesteps, as the product of many small measurement
likelihoods can result in very small evaluation values, quickly
approaching numerical precision. Therefore, instead of maxi-
mizing the measurement likelihood, we can instead minimize
the negative log-likelihood, which is equivalent to taking
the cumulative sum of the Mahalanobis distances at every
timestep.

This metric must be calculated for every chromosome in the
GA population at every generation, which requires re-running
the Kalman Filter with the new A matrix for every evaluation.

As will be shown later, simply using the Mahalanobis
distances alone will work, but will produce a filter that is
highly sensitive to noise, with higher-magnitude entries in the
A matrix. To reduce the sensitivity to noise (effectively like
reducing the gains within a proportional controller), we intro-
duce an additional L1 regularization term into the evaluation
function, which sums the magnitudes of all entries within the
chromosomes and considers this as an additive penalty. The
relative scaling factor on this L1 term is a hyperparameter that
can be set from 0 (no L1 regularization) to any positive value.

D. Hyperparameters

The most important hyperparameters for this model include
which selection, crossover, and mutation methods to use —
and for most of the testing process, we applied Roulette
selection, Interpolation crossover, and Gaussian mutation.
Roulette selection eliminates the need to specify the number
of chromosomes to choose out of the population (an additional
hyperparameter which would need to be tuned), and interpo-
lation crossover and Gaussian mutation are both well-suited
for the real-valued chromosomes in this model.

After running the models multiple times with varying pa-
rameters (such as the selection/crossover/mutation functions,
the population size, number of iterations, and the regulariza-
tion scaling), the overall performance of the filter seemed fairly
insensitive to most hyperparameter changes, with it being able
to track the true trajectory in nearly all instances. The most
important parameter by far was the regularization factor, as this
had a large effect on smoothing the filtered trajectory. How-
ever, though the filtered trajectory was relatively insensitive to
hyperparameter changes, the exact values in the chromosomes
could see some large changes. For instance, small changes
in the regularization scaling could change an entry in the A
matrix from 3 to 1, but the effect on the actual filter and how
well it tracked the ground truth was not very noticeable

E. Results

In Figure 5, we can see decent tracking in the genetic
algorithm result in (A). For the X, Y, and XY trajectory plots,
this is nearly as good as the Kalman filter result with the
exactly-known A matrix (B), even despite a small amount of
tracking error in θ.

The difference between the genetic algorithm with and
without regularization is quite noticeable between (A) and (C)
— the no-regularization result gives a tracking estimate which

5

Fig. 5. Genetic algorithm results for the holonomic robot. (A) The results
from the best filter as determined by the genetic algorithm; (B) The results
of the genetic algorithm when no regularization is included; (C) The filtering
result when a Kalman filter with the exactly known value of A is used

Fig. 6. Loss function convergence for each chromosome in the population

is significantly more jagged. While the confidence interval
does maintain the ground truth at nearly all times (which
differs from the regularized result), the tracking is so poor
that this result should not be used.

The evaluation function (Figure 6) also plateaus after a
relatively small number of iterations (about 10), and from
there, additional iterations do not seem to result in a better
filter.

Fig. 7. Comparing the best filter within the first generation of the genetic
algorithm to other candidates in the same generation.

Figure 7 shows that the Mahalanobis evaluation does an
effective job at selecting the best-tracking filter from the
population, even when the ground truth is not known. The
alternatives shown in red are much worse at tracking the
ground truth than the best filter in blue, and even though the
best filter is still a bit jagged and has some error, this is quite
good for just the first generation of the algorithm.

However, the final result for the A matrix from the genetic
algorithm puts the actual performance of the algorithm in per-
spective. While the filters produced via the genetic algorithm
can yield decent tracking results, this is not to say that the
entries of the A matrix converged to their exact values. In
fact, only about 6/9 of the entries in the matrix approached the
true value, and the convergence is not strong. When observed
over multiple iterations, these values would still see occasional
jumps, indicating that the population of candidate matrices still
had large variances.

Optimization result:

 0.459 −0.120 −0.082
−0.380 1.154 0.069
−0.081 −0.177 −0.036



6

True A matrix:

1 0 0
0 1 0
0 0 1


IV. CONCLUSION

From the performance and convergence comparisons, it is
unmistakable that the Gauss-Newton descent method in iEKF
vastly outperforms the three candidate first-order methods
(Gradient Descent, Adagrad, and Nesterov Momentum). It
converges reliably, in a short number of iterations, and with a
low computation time per iteration. However, for the system
used to evaluate these methods, the improvements from using
an iterative descent approach to find a better linearization point
were quite small, and nearly unnoticeable on the plots. This
held true for all of the descent methods, which were each able
to improve on the EKF via the Mahalanobis metric, albeit with
much longer computation times. Therefore, for this system,
even with the high efficiency of the iEKF, it is likely preferable
to stick with the standard EKF.

Future work in this area could explore other systems with
even more nonlinearity, where the standard EKF performs
poorly. Potentially, these methods could have more of an
impact on performance than what was seen here. Additionally,
a full hyperparameter sweep which considers a large number
of random trajectories of the system would help determine the
optimal parameters for generally strong performance, rather
than overfitting to a single example. And finally, other descent
methods could be considered — one interesting algorithm to
examine would be Levenberg-Marquardt, which is a variation
of Gauss-Newton which incorporates some aspects of gradient
descent, often leading to more robust performance with some
additional computational cost. [13]

For the genetic algorithms, this approach was successful
at taking an arbitrary set of unknown dynamics matrices
and iteratively generating a result that tracks the ground-truth
trajectory. However, this method should not be used as a means
of system identification, as the exact values in the final result
do not converge to the true dynamics matrix values. This is
likely because the Kalman filter can still perform well even
with some model mismatch, so it is difficult to distinguish the
performance differences between a mismatched model and the
true model.

Future work in this area should look into defining a more de-
tailed evaluation function that may be able to incorporate more
knowledge about the system, to help improve the convergence
to the true values. This may involve adding additional penalties
and constraints to prevent unstable systems or systems that
can become unbounded. Additionally, more testing should
be performed to determine the best use of the regularization
term, and the genetic algorithm should be trained on multiple
simulations so that we do not overfit the result to just this one
example.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Fluids Engineering, Transactions of the ASME,
vol. 82, no. 1, pp. 35–45, 1960.

[2] E. A. Wan and R. van der Merwe, “The Unscented Kalman Filter for
Nonlinear Estimation,” 2000.

[3] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, 1 ed., 2005.

[4] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization,” Journal of Machine
Learning Research, vol. 12, 2011.

[5] Y. E. Nesterov, “A Method of Solving A Convex Programming Problem
With Convergence Rate O(1/k2),” Soviet Math. Dokl., vol. 27, no. 2,
pp. 372–376, 1983.

[6] S. D. Brown and S. C. Rutan, “Adaptive Kalman Filtering.,” Journal of
Research of the National Bureau of Standards (United States), vol. 90,
no. 6, pp. 403–407, 1985.

[7] Z. Chen, N. Ahmed, S. Julier, and C. Heckman, “Kalman Filter Tuning
with Bayesian Optimization,” pp. 1–12, 2019.

[8] R. M. Asl, R. Palm, H. Wu, and H. Handroos, “Fuzzy-Based Parameter
Optimization of Adaptive Unscented Kalman Filter: Methodology and
Experimental Validation,” IEEE Access, vol. 8, pp. 54887–54904, 2020.

[9] H. Heffes, “The Effect of Erroneous Models on the Kalman Filter
Response,” IEEE Transactions on Automatic Control, vol. 11, no. 3,
pp. 541–543, 1966.

[10] M. Karasalo and X. Hu, “An optimization approach to adaptive Kalman
filtering,” Automatica, vol. 47, no. 8, pp. 1785–1793, 2011.

[11] L. Ljung, “System Identification,” in Signal Analysis and Prediction,
pp. 163–173, New York: Springer, 1998.

[12] M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimization.
Cambridge, MA: MIT Press, 2022.

[13] K. Levenberg, “A Method for the Solution of Certain Non-Linear
Problems in Least Squares,” Quarterly of Applied Mathematics, vol. 2,
pp. 164–168, 1944.

7

