
Fantasy Football Roster Prioritization Using Q-Learning

Daniel Morton, Walter Manuel, and Zahra Ahmed
Stanford University, Stanford, California, 94305

This work applies reinforcement learning to the game of Fantasy Football. Fantasy football is
a game where human agents receive points each week based on how well American Football
players on their fictitious roster perform in the National Football League (NFL) each week. The
uncertainty present in both actual and fantasy football leads to the problem of how an agent
playing fantasy football can prioritize different football positions and sequentially make lineup
changes to a fantasy roster each week in order to maximize performance over the course of an
NFL season. We formatted this problem as a Markov Decision Process (MDP) and employed a
model-free approach using Q-learning to learn the optimal roster decision policy. To accomplish
this, the problem space was constrained to three player positions, and a limited set of actions
that involved swapping players with others at their position or keeping the same roster for the
week. Also, a reward function was developed based on both the relative performance of the new
roster compared to the previous roster and transaction costs for player swaps. Once completed,
the model was trained on multiple seasons of fantasy football data. The policy generated from
the trained model was able to outperform a baseline random policy the majority of the time
when tested on different NFL seasons.

I. Introduction

Fantasy football is a popular game that many fans and followers of American Football play throughout the football
season. In fantasy football, participants in a fictitious “league” each create a “roster” of players made up of players in

the National Football League (NFL). Every time a player on your fictitious roster plays in real life, you win or lose points
based on their actual performance. The objective of the game is to choose the best players for your team to maximize
your points. In season-long leagues, there is typically a fantasy draft at the start of the season, where the participants in
the fantasy league are assigned a draft order and pick players to fill out their roster. Then, throughout the season, each
week the participants have to decide who to start on their roster in order to win weekly match-ups against other human
agents in the league.

Uncertainty is inherent to the game of fantasy football, as a player’s performance can often be unpredictable from week
to week. This performance can be affected by numerous variables, such as the skill of the team the player is competing
against that week, the weather, the player’s health or proclivity for sustaining injuries, and more, in addition to simply
pure luck. There are also multiple constraints in fantasy football, so that a human agent cannot add a better player
without giving something up in return. Ultimately, this makes the game of fantasy football difficult to play and requires
strategical thinking.

This project modified the traditional fantasy football objective and instead focused primarily on the week-to-week roster
adjustment decision over the course of the season. At each week, given our current lineup of players and their ranking
with respect to the league performance in the previous week, the agent made a decision: should we trade a player, or
not? If so, which player should we trade, and what type of trade should be made? Thus, the primary goal of this project
was to solve the problem of how to prioritize positions and make lineup changes to a fantasy roster each week in order to
maximize performance over the course of an NFL season.

II. Literature Review
Prior research into using machine learning for fantasy football has primarily focused on optimizing a single lineup
by modeling it as a variation of the knapsack problem using integer or mixed-integer programming [1][2]. For the
sequential decision-making process that this project focuses on, the application to fantasy football has been limited.
However, similar sequential allocation problems have been addressed for various other applications, including in other
fantasy sports [3] as well as stock trading [4].

1



In one source, researchers attempted to optimally form a fantasy soccer team lineup from players competing in the
English Premier League [3]. They formulated the problem as a belief-state Markov Decision Process, where the beliefs
are the player’s characteristics, an action is the selection of a certain fantasy lineup, and the observations are the players
available, matches to be played, and the outcomes of the prior week’s matches. They then created a Bayesian Q-Learning
algorithm and evaluated its efficacy. Similarly, Neuneier employed Q-learning to determine optimal financial asset
location [4]. They modeled the problem as a traditional MDP with the state composed of elements representing both the
financial market as well as an investor’s current portfolio. In order to manage the large state space, Neuneier used neural
networks to approximate the action value function instead of solving it discretely. These prior works make it clear that
Q-learning is an appropriate and proven method for approaching allocation problems.

III. Approach
For this project, we framed the problem as an MDP with a relatively small state space and employed a model-free
approach to learning the optimal policy for making roster decisions. Q-learning is particularly well suited for this
problem due to the stochastic nature of the reward and transition dynamics. All the coding involved in creating our
model, processing data, conducting rollouts, and running Q-learning was done using Julia.

To limit the scope of the problem, we focused on a modeling a single agent that makes decisions about a three-player
roster, independent of the other participants in the league. This agent must decide how to prioritize upgrading their
roster each week based on the results from the previous week’s game. In order to further increase the tractability of the
problem, we focused on a limited number of available players and actions.

A. Model Definition

1. State
Each roster consisted of selecting a single player for each of three positions: Quarterback (QB), Running Back (RB),
and Wide Receiver (WR). Our league is comprised of 8 potential players for each of the three positions. The state space
is then equal to the number of permutations of those 8 players for each position, giving us a total of 512 possible states.

The state was defined by the rank of each player on the team instead of by player name in order to generalize the model
so it can be applied to different groups of players. The ranks were determined by number of fantasy points scored each
week. The tuple of player ranks was then encoded into a single integer from 1 to 512 using binary. Figure 1 shows an
example of how the state is encoded.

Fig. 1 The state encodes the ranks of the chosen lineup

2. Action
Our seven possible actions are listed in Table 1. Trading up or down takes the ranking for the current week and then
swaps the player for the player immediately above or below them in the ranking. Doing nothing means that the previous
week’s lineup will be carried over into the next iteration. While this is not the way that trades are made in actual Fantasy
Football leagues, this was intended to represent the overall trading process while simplifying our action space.

2



Table 1 Actions

1 Swap QB Up
2 Swap QB Down
3 Swap RB Up
4 Swap RB Down
5 Swap WR Up
6 Swap WR Down
7 Do Nothing

3. Reward Model
Our reward model incorporated two main components: a "transaction cost" every time you swap a player, and the
roster’s performance as a function of the number of fantasy points it scored.

For the transaction cost, we penalized the agent for making a trade upwards and rewarded the agent for deciding to trade
down. If the agent does not make a trade (action 7), the transaction cost is 0. Each position receives a different scaling
based on the expected number of fantasy points the position traditionally scores - in our case, there is a higher scalar
associated with the quarterback since players at this position tend to score more points. The entire transaction cost was
multiplied by a scalar so that it was the same order of magnitude as the fantasy points. This transaction cost reflects
actual fantasy football, which has costs associated with acquiring new players, such as trading away a player of equal
value, or spending a portion of a fictitious budget. For the fantasy points, we used the difference between how well the
current roster performed for the week and how well the roster from the prior week (before the agent took an action)
would have performed in the current week. The fantasy points were obtained from the rollout.

𝑃 =


2 𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑏𝑎𝑐𝑘

1.5 𝑅𝑢𝑛𝑛𝑖𝑛𝑔 𝐵𝑎𝑐𝑘

1 𝑊𝑖𝑑𝑒 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 =

{
𝐺 ∗ 𝑃 ∗ −1

𝑁
𝐴𝑐𝑡𝑖𝑜𝑛 𝜖 [1, 3, 5]

𝐺 ∗ 𝑃 ∗ 1
𝑁

𝐴𝑐𝑡𝑖𝑜𝑛 𝜖 [2, 4, 6]

𝑅𝑒𝑤𝑎𝑟𝑑 = (𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡) + (𝐹𝑎𝑛𝑡𝑎𝑠𝑦 𝑃𝑜𝑖𝑛𝑡𝑠 𝑓 𝑜𝑟 𝑁𝑒𝑤 𝐿𝑖𝑛𝑒𝑢𝑝) − (𝐹𝑎𝑛𝑡𝑎𝑠𝑦 𝑃𝑜𝑖𝑛𝑡𝑠 𝑓 𝑜𝑟 𝑂𝑙𝑑 𝐿𝑖𝑛𝑒𝑢𝑝)

where,

𝑃 = Position Scalar
𝐺 = General Scalar to increase importance of transaction cost
𝑁 = New Rank of the position that was swapped

B. Rollouts
In order to simulate an NFL season playing out each week, we conducted rollouts using data from the 1999-2019 NFL
seasons. The data on weekly fantasy football player performance used to train and test our algorithm was downloaded
from https://www.fantasyfootballdatapros.com/csv_files. We parsed the data into CSV files for each week
of each season. The CSV files contained the player names, positions, and total fantasy points scored. To conduct
our rollouts, we sequentially stepped through each week to re-calculate the ranks of the players in our state space and
determine our reward for that iteration.

3

https://www.fantasyfootballdatapros.com/csv_files


C. Q-Learning
After defining our model and the necessary inputs for Q-Learning (state, next state, action and reward), we implemented
Q-learning on the 2017 and 2018 seasons for 1000 episodes. For each episode, we initialized with a randomly generated
lineup and then stepped through each of the 17 weeks of the football season. For our Q-learning parameters, we chose a
learning rate, 𝛼, of 0.5. In order to adequately explore the state space when training the model, we implemented an
𝜖-greedy exploration strategy with 𝜖 = 0.9, which we decayed every iteration at a rate of 𝛼 = 0.9.

IV. Results

A. Q-Learning Policy
After training our model, we extracted a policy from our action-value matrix. The frequency of each action as seen in
the extracted policy is shown in Figure 2. Our agent learned that it was more advantageous to swap a player up rather
than down, despite the negative transaction cost associated with swapping up. More specifically, the agent preferred to
swap the quarterback up over the other two positions, which is in line with what we would expect as quarterbacks tend
to score more points than running backs and wide receivers. Additionally, our agent preferred the "Do Nothing" action
over every action except for swapping a quarterback up. Since player performance can vary substantially from week to
week, retaining the same lineup even after a poor performance can often be an optimal decision. Therefore, the agent’s
preference for the "Do Nothing" action is representative of a common strategy employed by human decision-makers
when playing fantasy sports. In particular, the agent preferred the "Do Nothing" action for states associated with higher
ranks for all three positions, essentially assuming that a higher ranked player is more likely to continue performing well.

Fig. 2 Frequency of each Action in Learned Policy

B. Comparison Against Baseline
After running Q-learning on the 2017 and 2018 seasons to extract a policy, we tested this policy on every season from
2002 through 2012. We established the baseline for comparison to be a random policy. For each season, we obtained
the average total reward gained for the season over 20 iterations - each time with a random initial lineup. We compared
our learned policy to the random policy to determine the effectiveness of our agent. Table 2 tabulates the average reward
per season for each policy while Figure 3 shows the average reward for each season using both the learned policy and
the random policy.

We tested our learned policy on various seasons under the assumption that we could expect similar trends in performance
in every season. This assumption was largely justified in the results shown in Table 2 which show that the learned policy
significantly outperformed a random policy for most years. However, from Figure 3, we can see that there are a few

4



Table 2 Comparison of Learned to Random Policy

Average Reward Per Season, Learned Policy 2.4102
Average Reward Per Season, Random Policy -0.8497
Average Reward Above Baseline Per Season 3.2599

Average % Improvement in Reward Per Season 383.66%

seasons (2004 and 2008) where the random policy did better. There are several reasons why this the case. First, our
model does not account for the variance in a player’s past performance - it exclusively ranks players based on their
performance for the current week. Thus, a player who is ranked highly one week could be toward the bottom of the
list the next week. For this reason, a random policy has the potential to outperform the learned policy because it can
inadvertently take more risks with it’s lineup choices. Additionally, our reward function accounts for the difference
between the current and previous lineup’s performance in terms of fantasy points. Therefore, a random, favorable trade
during a single week in the season can provide enough positive reward to offset potentially negative rewards for the rest
of the season. There are several ways to improve the robustness of the model in order to account for these biases which
were outside the scope of this project but will be addressed in future work.

Fig. 3 Comparison of Learned to Random Policy by Total Reward Per Season

V. Conclusion
In this report, we considered a reinforcement learning-based approach to fantasy football lineup management and roster
prioritization. We implemented a Q-learning model using condensed fantasy lineups as states, swapping players at a
position up or down according to their rank as actions, and a reward function based on the transaction cost to swap a
player and the improvement in fantasy points scored by a lineup. This model was trained on actual historical fantasy
football data using an epsilon-greedy exploration strategy, and then the extracted policy was tested on a different set of
historical data. The results indicated an average improvement of 3.2599 reward points, or 383.66% per season, for the
learned policy over the baseline random policy. Furthermore, the model was able to learn to prioritize some actions over
others in a logical way, such as swapping the QB up (QBs score more fantasy points) or doing nothing (stability is often
a winning strategy to deal with the week-to-week volatility of fantasy football). These results demonstrate that our
approach was valid and could be useful if extended further in scope and complexity.

5



VI. Future Work
Future work on this project would include many improvements to our model to capture the uncertainty and variability in
the domain of fantasy football. Our current model only accounts for a player’s current rank, and does not take past
player performance and trends into consideration. We began work on a model that encodes player mean and variance
into the state, and while it was ultimately not used for this project, further developing this advanced model could result
in generating a policy that can outperform a random policy more often. By incorporating historical data, the model will
be more equipped to make predictions about a player’s future performance. There are also many variables beyond a
player’s individual traits and history that can affect outcomes in fantasy football, such as weather conditions and the
quality of the opponent a player is facing. Finding a way to incorporate these factors into our model so that it can learn
how they affect player performance could lead to significant improvements to the outputted policy.

Another area for future improvements would be to expand the state and action space to make it more representative
of the formats used in other fantasy leagues. A standard fantasy football roster has a total roster size of 15 players (9
starting spots and 6 bench spots), with 6 positions (QB, RB, WR, TE, K, DEF). Our extremely simplified model only
considered a 3-player team that started one player at the QB, RB, and WR positions. We also limited the action space to
swapping one position’s player each week, whereas in real fantasy football, multiple trades can be made in a week and
players can be exchanged with players at different positions.

VII. Contributions
All three team members contributed equally to the project. Walter was responsible for obtaining, processing, and
integrating all of the data used for the rollouts and testing, as well as for post-processing the results of Q-learning and
random policies. Daniel was responsible for implementing several versions of the model that accounted for various
parameters in the state space as well as helping to integrate all of the code. Zahra was responsible for integrating
the rollouts and reward function with the model and implementing the Q-learning. All three members contributed to
scoping the project, debugging code, and writing the report.

References
[1] Becker, A., and Sun, X. A., “An analytical approach for fantasy football draft and lineup management,” Journal of Quantitative

Analysis in Sports, Vol. 12, No. 1, 2016, pp. 17–30. https://doi.org/10.1515/jqas-2013-0009.

[2] Hunter, D. S., Vielma, J. P., and Zaman, T., “Picking Winners Using Integer Programming,” 2016. https://doi.org/arXiv:
1604.01455v2.

[3] Matthews, T., Ramchurn, S. D., and Chalkiadakis, G., “Competing with Humans at Fantasy Football: Team Formation in Large
Partially-Observable Domains,” Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Association for the
Advancement of Artificial Intelligence, 2012.

[4] Holleis, P., Wagner, M., and Koolwaaij, J., “Enhancing Q-Learning for Optimal Asset Allocation,” Advances in Neural
Information Processing Systems 10, 1997.

6

https://doi.org/10.1515/jqas-2013-0009
https://doi.org/arXiv:1604.01455v2
https://doi.org/arXiv:1604.01455v2

	Introduction
	Literature Review
	Approach
	Model Definition
	State
	Action
	Reward Model

	Rollouts
	Q-Learning

	Results
	Q-Learning Policy
	Comparison Against Baseline

	Conclusion
	Future Work
	Contributions

