
Genetic Kalman Filtering: An Approach to State Estimation Optimization
with Unknown System Dynamics

Daniel Morton
Stanford University
Stanford, CA, USA

dmorton@stanford.edu

Abstract—Various versions of the Kalman filter and opti-
mization techniques for state estimation have been researched
extensively for decades, with some exploring how to perform
state estimation when certain parameters of the system are
unknown. However, most of these approaches have focused
on noise estimation when the process and measurement noise
matrices (Q and R) are unknown — and not in the case where the
dynamics matrix (A) is unknown. Therefore, this paper proposes
the use of genetic algorithms to solve this problem of unknown
dynamics, by initializing a population of chromosomes represent-
ing possible contenders for the flattened dynamics matrix, and
then iteratively filtering and applying selection, crossover, and
mutation to the population. With each iteration, we converge
to a dynamics matrix (and corresponding filtered state estimate
trajectory) which maximizes the measurement likelihood, a proxy
for evaluating the quality of the filtered trajectory when the
ground-truth trajectory is unknown. This model is applied to
two linear systems: a holonomic robot and a spring-mass-damper
system, and through these systems, we see that this technique
can produce a Kalman filter that does track the ground truth
trajectory, but convergence to the true A matrix values is not
guaranteed.

I. NOMENCLATURE

A = Dynamics matrix
B = Controls matrix
C = Measurement matrix
Q = Process noise covariance
R = Measurement noise covariance
f = Dynamics function
g = Measurement function
Σt = State covariance
µt = State estimate
yt = Measurement
ut = Control

II. INTRODUCTION

Since Kalman’s original introduction of his filter in 1960
[1], there have been numerous different filtering methods
introduced which build on the original Kalman Filter (KF)’s
capabilities. The Extended Kalman Filter (EKF) and the
Unscented Kalman Filter (UKF) [2], for instance, aim to
improve the filter’s performance on nonlinear systems by either
linearizing about the belief state, or propagating a set of sigma
points through a nonlinear function to gain a new estimate
of the mean and covariance [3]. Just in these few examples,
we see that state estimation is inherently intertwined with
optimization: the linearization process for the EKF is essen-
tially a Gauss-Newton optimization step, and the UKF follows

the same process as generalized pattern search or Hooke-
Jeeves. Even more examples can be found when considering
the similarities between the KF’s Gaussian distributions and
optimization techniques which also rely on Gaussian assump-
tions, population methods and particle filtering, and more.

An interesting challenge in filtering is how to handle
uncertainty in the model parameters, and the most common
example of this is noise estimation. While the Kalman Filter
and its derivatives can handle zero-mean additive Gaussian
white noise on the measurements and process noise, the
problem must be reformulated if the distribution of this noise is
unknown. Recent research has looked into ways to determine
the magnitudes of these noise distributions, including using
covariance matching [4], Bayesian optimization [5], fuzzy-
based evolutionary algorithms [6], recursive approaches [7],
or Innovation-based Adaptive Estimation (IAE) [8].

One noise estimation technique, Multiple Model Adaptive
Estimation (MMAE) [8] inspired the work in this paper —
this technique handles a bank of several different models and
computes the Bayesian probability of each being the true
system model. This works well for noise, but breaks down
when the system dynamics are fully unknown because it relies
on the assumption that one model is ”correct” out of the
population.

Therefore, if we have a population of filters with unknown
system dynamics, how can we converge to the correct model,
using a mix of state estimation, system identification [9], and
optimization?

Genetic algorithms may serve as a possible solution to
this problem. This is a population-based optimization method
that optimizes a collection of design points based on biolog-
ical evolution techniques. Three main processes — selection,
crossover, and mutation — are applied at each iteration to
select a pair of high-fitness parent chromosomes, combine
their genetic information, and pass this on to a new child
chromosome (which may have some noise or mutation applied
to its values). Here, a chromosome refers to a vector of design
points, genetic info refers to the specific values of each design
point, and fitness is inversely related to the evaluation function.
Since we seek to minimize the evaluation function, chromo-
somes in the population with a lower evaluation function have
a higher fitness, and are more likely to pass along their genetic
info to the next generation. [10]

So, in this paper, we apply genetic algorithms to linear-
system state estimation with unknown dynamics, maintaining

1

a population of candidate A matrices in their flattened state
as our chromosomes, and repeatedly filtering, evaluating, and
updating the values in the matrices according to these genetic
algorithm processes.

III. APPROACH

Algorithm 1 Genetic Kalman Filter Algorithm
Initialize parameters, dynamics, controls, noise
Simulate, get measurement history
Initialize population
for K iterations do

for Each chromosome do
A ← to A matrix(chromosome)
Trajectory ← KF(µt, σt, u, y, Q, R, f , g, A, C)

end for
Initialize Evaluations ← []
for Each filtered trajectory do

Metric ← 0
for All time t do

Metric += Mahalanobis(Measured, Expected)
end for
Metric += L1 regularize(chromosome) * Scaling
Evaluations.append(Metric)

end for
Parents ← Selection(Population, Evaluations)
Children ← Crossover(Parents)
New Population ← Mutation(Children)

end for
Return best filter from the population

Algorithm 1 overviews the main process for this project: At
each iteration, we extract a chromosome from the population,
convert this into a square matrix, and then run the Kalman
filter using this matrix as A. All other matrices in the Kalman
filter (B, C, Q, R) are predefined within the system models
initialized at the beginning of the algorithm. The Kalman filter
is evaluated using the same µ0 and Σ0 for each chromosome in
the population, so that we can compare the performance across
all chromosomes without one candidate performing artificially
well due to a ”good start”. We store each of the trajectories
produced by the different filters, and then run the evaluation
metric on each of these. For each timestep in the trajectory,
we calculate the cumulative Mahalanobis distance for the
measurement likelihood, and then add on an L1 regularization
term at the end. Once these evaluation values are calculated,
we know the relative performance of each chromosome in the
population, and can run the selection, crossover, and mutation
functions from the genetic algorithm to select the population
for the next iteration. After K iterations, we exit the main loop
and then run a final evaluation process on the last population
to extract the final result.

Note that this approach is only applicable to linear, time-
invariant systems, so that all entries in the dynamics matrix
(A) are constant in time, and there is a fixed set of values (the
design point for the flattened A matrix) to which the genetic

algorithm can converge. Without this assumption, a more
complex genetic algorithm method would need to account
for how the A-matrix parameters vary in time and with the
current system state, which has not been considered in this
paper. This reason is also why we could not apply one of
the common techniques for estimating unknown parameters —
appending the unknown parameter to the state and modifying
the dynamics matrices/Jacobians to account for this. Doing so
inherently introduces nonlinearity into the system because the
dynamics Jacobian will depend on the current state, requiring
an Extended Kalman Filter or another filter that can handle
nonlinearity.

A. Linear System Models

1) Holonomic Robot: The holonomic robot system has a
state space of {x, y, θ} with a noisy measurement model
representing a GPS reading for the (x, y) position, and a
compass reading for the heading angle, θ. The holonomic
assumption assumes that x, y, and θ are all independently
controllable via vx, vy , and vθ, which differs from the common
Dubins car system, where x and y are functions of the forward
velocity and the heading angle θ. The Dubins car system is
therefore inherently nonlinear because of the sin θ and cos θ
terms introduced by this dependence, and was not considered
for this project. For testing purposes, we applied the following
arbitrary control policy:

u(t) =

vx,avg|(sin(t))|vy,avg cos(t)
ϕavg sin(t)

The average linear and rotational velocities are also arbitrary

and were set to 1 m/s, 2 m/s, and 0.1 rad/s respectively. The
simulation was run for 20 seconds with a discrete timestep dt
equal to 0.1 s.

2) Spring-Mass-Damper: The spring-mass-damper system
has a state space of {x, v}, with measurements of the position
of the mass x only, and a driving force f(t) which acts as
the sole control input to the system. The model follows the
discretized version of the standard second-order differential
equation, mẍ + cẋ + kx = f(t). The system parameters for
the spring constant, damping coefficient, and mass were set
to 5 N/m, 1 kg/s, and 10 kg, respectively. These parameters
were only known by the simulation.

For testing, we applied the following arbitrary control
policy:

f(t) = F sin(ωt)

Here, we set F to be 2 N , and ω as 1.5x the natural
frequency of the system,

√
k/m. The simulation was run for

10 seconds with the same discrete timestep dt as before, 0.1
s.

2

B. Evaluation Function

The overarching goal of a state estimator is to match the
ground-truth data as closely as possible, given a set of noisy
measurements. Since these state estimators do not have access
to the ground truth, we therefore cannot use the ground truth as
a comparison in the evaluation function, or else there would
not be a point to using a state estimator in the first place.
Instead, we rely on the cumulative measurement likelihood to
evaluate the quality of the result from the genetic algorithm,
via the Mahalanobis distance between the measurement re-
ceived at a certain timestep, and the predicted measurement
based on the current state estimate µt. Since the Kalman filter
relies on a Gaussian assumption for the measurement and state
models, the Mahalanobis distance is an effective measure of
how far a measurement is from the mean of the distribution,
given the multidimensional covariance of the distribution.

The Mahalanobis distance for the measurement likelihood
can be written as follows, where y is the measurement re-
ceived, g(µt) is the expected measurement function given µt,
C is the measurement matrix, Σt is the state covariance matrix,
and R is the measurement noise matrix:

(y − g(µt))(CΣtC
T +R)−1(y − g(µt))

The probability density function for a multivariate Gaussian
is uniquely defined by this Mahalanobis distance. In the
general case:

N(µ,Σ) =
1√

(2π)n|Σ|
e

−1
2 (x−µ)TΣ−1(x−µ)

N(µ,Σ) ∝ eMahalanobis Distance

Assuming conditional independence on measurements given
the state, we can evaluate the cumulative measurement like-
lihood as the product of the measurement likelihoods at
every timestep. However, this is numerically unstable for
large timesteps, as the product of many small measurement
likelihoods can result in very small evaluation values, quickly
approaching numerical precision. Therefore, instead of maxi-
mizing the measurement likelihood, we can instead minimize
the negative log-likelihood, which is equivalent to taking
the cumulative sum of the Mahalanobis distances at every
timestep.

This metric must be calculated for every chromosome in the
GA population at every generation, which requires re-running
the Kalman Filter with the new A matrix for every evaluation.

As will be shown later, simply using the Mahalanobis
distances alone will work, but will produce a filter that is
highly sensitive to noise, with higher-magnitude entries in the
A matrix. To reduce the sensitivity to noise (effectively like
reducing the gains within a proportional controller), we intro-
duce an additional L1 regularization term into the evaluation
function, which sums the magnitudes of all entries within the
chromosomes and considers this as an additive penalty. The
relative scaling factor on this L1 term is a hyperparameter that
can be set from 0 (no L1 regularization) to any positive value.

IV. RESULTS

A. Hyperparameters

The most important hyperparameters for this model include
which selection, crossover, and mutation methods to use —
and for most of the testing process, we applied Roulette selec-
tion, Interpolation crossover, and Gaussian mutation. Roulette
was chosen because it eliminates the need to specify the
number of chromosomes to choose out of the population
(as with truncation and tournament selection), and fewer
hyperparameters to tune is always appreciated. With crossover,
interpolation is well-suited for the real-valued chromosomes in
this model. Also, the alternative methods of crossover (single-
point, two-point, or uniform) occasionally seemed to result in
large spikes in the loss function convergence plot when a poor
crossover was made, which was not an issue with interpolation.
Lastly, Gaussian mutation is the main mutation method for
real-valued chromosomes, so there was only one reasonable
choice here.

After running the models multiple times with varying pa-
rameters (such as the selection/crossover/mutation functions,
the population size, number of iterations, and the regulariza-
tion scaling), the overall performance of the filter seemed fairly
insensitive to most hyperparameter changes, with it being
able to track the true trajectory in nearly all instances. The
most important parameter by far was the regularization factor
though, as this had a significant effect on smoothing the filtered
trajectory.

However, though the filtered trajectory was relatively in-
sensitive to hyperparameter changes, the exact values in the
chromosomes could see some large changes. For instance,
small changes in the regularization scaling could change an
entry in the A matrix from 3 to 1, but the effect on the actual
filter and how well it tracked the ground truth was not very
noticeable

B. Holonomic Robot

In Figure 1, we can see decent tracking in the genetic
algorithm result in (A). For the X, Y, and XY trajectory plots,
this is nearly as good as the Kalman filter result with the
exactly-known A matrix (B), even despite a small amount of
tracking error in θ.

The difference between the genetic algorithm with and
without regularization is quite noticeable between (A) and (C)
— the no-regularization result gives a tracking estimate which
is significantly more jagged. While the confidence interval
does maintain the ground truth at nearly all times (which
differs from the regularized result), the tracking is so poor
that this result should not be used.

The evaluation function (D) also plateaus after a relatively
small number of iterations (about 10), and from there, addi-
tional iterations do not seem to result in a better filter.

Figure 2 shows that the Mahalanobis evaluation does an
effective job at selecting the best-tracking filter from the
population, even when the ground truth is not known. The
alternatives shown in red are much worse at tracking the

3

Fig. 1. Genetic algorithm results for the holonomic robot. (A) The results from the best filter as determined by the genetic algorithm; (B) The filtering
result when a Kalman filter with the exactly known value of A is used; (C) The results of the genetic algorithm when no regularization is included; (D) The
evaluation function values for each of the chromosomes over the iterations of the genetic algorithm

ground truth than the best filter in blue, and even though the
best filter is still a bit jagged and has some error, this is quite
good for just the first generation of the algorithm.

Figure 3 puts the actual performance of this algorithm
in perspective. While the filters produced via the genetic
algorithm can yield decent tracking results, this is not to say
that the entries of the A matrix converged to their exact values.

In fact, only about 6/9 of the entries in the matrix approached
the true value, and this convergence is not particularly strong.

The best result in this figure is bit 4, because the final result
was quite close to the true value of 1, though there was some
instability in the value over the iterations. The other bits that
converged all approached 0, which is correct, but there is a
chance this is attributed to the L1 regularization more than

4

Fig. 2. Comparing the best filter within the first generation of the genetic algorithm to other candidates in the same generation.

Fig. 3. Evolution of the values within the best chromosome over time.

the Mahalanobis distance metric. For bits 0 and 8, these were
supposed to equal 1, and while they came close on occasion,
they did not converge to that value.

Optimization result:

 0.459 −0.120 −0.082
−0.380 1.154 0.069
−0.081 −0.177 −0.036

True A matrix:

1 0 0
0 1 0
0 0 1

C. Spring-Mass-Damper

The results from the spring-mass-damper system were very
similar to that of the holonomic robot — the result from the
genetic algorithm was able to track the ground truth with only
minimal error, the L1 normalization was equally as beneficial,
and yet the values of the final chromosome still were not able
to match the true values. The only major differences of note
were as follows:

(1) Whereas with the holonomic robot we had measure-
ments of all elements of the state (x, y, θ), for the spring-mass-
damper we only measured the position of the mass, and not
the velocity. This seemed to have little effect on the genetic
algorithm result, however, as it was still able to effectively
track the system velocity.

(2) When comparing the output of the genetic algorithm
to other non-optimized candidate filters, many of these other
filters produced trajectories which quickly became unbounded,
leading to the filter estimate running off to positive or negative
infinity, and extremely high objective function values. It is
great to see that the genetic algorithm was able to maintain
bounded dynamics in the result, even when these unbounded
filters existed within the original population.

Optimization result:
[
1.705 −1.222
0.045 0.283

]

True A matrix:
[

1 dt
−kdt/m 1− cdt/m

]
=

[
1 0.1

−0.05 0.99

]

5

V. CONCLUSION

When strictly considering the performance of the Kalman
filter, genetic algorithms are successful at taking an arbitrary
set of unknown dynamics matrices and iteratively generating
a result that tracks the ground-truth trajectory. However, this
method should not be used as a means of system identification,
as the exact values in the final result do not converge to the
true dynamics matrix values. This is likely because the Kalman
filter can still perform well even with some model mismatch,
so it is difficult to distinguish the performance differences
between a mismatched model and the true model.

Future work in this area should look into defining a more de-
tailed evaluation function that may be able to incorporate more
knowledge about the system, to help improve the convergence
to the true values. This may involve adding additional penalties
and constraints to prevent unstable systems or systems that
can become unbounded. Additionally, more testing should be
performed to determine the best use of the regularization term
— it is possible that with a more refined evaluation function,
this term may not be needed, and the difference between L1
and L2 regularization has not yet been studied.

Additional ideas include training this on multiple simula-
tions in parallel, so that the genetic algorithm does not overfit
the result to this one particular simulated trajectory. This work
might also be extended to the other matrices in the system,
such as the controls matrix, B, or the noise matrices, Q and R.
Applying this to C may be difficult due to how essential this
matrix is in determining the Mahalanobis distance, but there
could be potential there. For Q and R, most likely, some of the
other methods for noise prediction seen in the previous work
will outperform this one.

APPENDIX

The code for the project and additional plots for the spring-
mass-damper system are available at the project’s Github page,
https://github.com/danielpmorton/Genetic Kalman Filtering

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of Fluids Engineering, Transactions of the ASME,
vol. 82, no. 1, pp. 35–45, 1960.

[2] E. A. Wan and R. van der Merwe, “The Unscented Kalman Filter for
Nonlinear Estimation,” 2000.

[3] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, 1 ed., 2005.

[4] S. D. Brown and S. C. Rutan, “Adaptive Kalman Filtering.,” Journal of
Research of the National Bureau of Standards (United States), vol. 90,
no. 6, pp. 403–407, 1985.

[5] Z. Chen, N. Ahmed, S. Julier, and C. Heckman, “Kalman Filter Tuning
with Bayesian Optimization,” pp. 1–12, 2019.

[6] R. M. Asl, R. Palm, H. Wu, and H. Handroos, “Fuzzy-Based Parameter
Optimization of Adaptive Unscented Kalman Filter: Methodology and
Experimental Validation,” IEEE Access, vol. 8, pp. 54887–54904, 2020.

[7] H. Heffes, “The Effect of Erroneous Models on the Kalman Filter
Response,” IEEE Transactions on Automatic Control, vol. 11, no. 3,
pp. 541–543, 1966.

[8] M. Karasalo and X. Hu, “An optimization approach to adaptive Kalman
filtering,” Automatica, vol. 47, no. 8, pp. 1785–1793, 2011.

[9] L. Ljung, “System Identification,” in Signal Analysis and Prediction,
pp. 163–173, New York: Springer, 1998.

[10] M. J. Kochenderfer and T. A. Wheeler, Algorithms for Optimization.
Cambridge, MA: MIT Press, 2022.

6

https://github.com/danielpmorton/Genetic_Kalman_Filtering

	Nomenclature
	Introduction
	Approach
	Linear System Models
	Holonomic Robot
	Spring-Mass-Damper

	Evaluation Function

	Results
	Hyperparameters
	Holonomic Robot
	Spring-Mass-Damper

	Conclusion
	References

